
Evaluating Search Algorithms
for Solving n-Puzzle

Sumit Gupta, Sameedha Bairagi
Indiana University Bloomington

{guptasum, sbairagi}@indiana.edu

Abstract—Artificial game playing has gathered signif-
icant attention in past few decades. Several games are
used to evaluate various algorithm. n-puzzle is a classical
problem in computer science in evaluating search heuristics
which is a central problem in artificial game playing
and artificial intelligence in general. In this paper we
formulate n-puzzle as an undirected graph problem and
evaluate search algorithms with various heuristics. We find
out relation between a random puzzle state and its time
complexity and also provide evidence that finding a shortest
path to an n-puzzle is an NP-Hard problem.

I. INTRODUCTION

Puzzle and games have gathered huge interest of
humans from ancient times. From Chess to the ancient
game of Go, people have found different techniques
and strategies to master these games. With development
of computing power in 20th century, people have been
trying to teach computers to play (or pretend to play)
games. Few decades ago, IBMs Deep Blue mastered
Chess when it beat Garry Kasparov [1]. It was estimated
at that time that it will be another 100 years when a
computer will be able to beat a human expert in Go.
However, recent breakthrough in deep learning have
had a huge impact on artificial game playing. Recently,
AlphaGo [2] beat the world champion Lee Sedol in Go
[3]. At the core of these intelligent computers, there
are well designed and efficient algorithms which guide
them to make moves and choose one optimum path out
of several potential paths to achieve its target of winning
the game. Motivated by the game playing capabilities of
computer systems, we consider the problem of n-puzzle
and evaluate its efficiency on various factors.

An n-puzzle is a sliding tile puzzle which is played
on a matrix of n x n numbered tiles with one tile
missing to allow tile shifts as shown in Figure 1. Figure
1(a) shows the target state of an 8-puzzle where all the
number appear in order and empty tile occur at the
bottom right corner. A non-target state would be the one
where numbers are not in order as shown in Figure 1(b).

The complexity of an n-puzzle increases as n becomes
large both in terms of running time complexity and
space efficiency. The number of possible state for

n-puzzle is n! which makes the search space enormous
and intractable.

Fig. 1. (a) Target state of 8-puzzle, (b) A non-target state (c) An
unsolvable state

Fig. 2. Number of possible states are n!

Figure 2 shows the number of possible states of an
n-puzzle for different n on a log scale. The motivation
behind this paper is that despite being a simple puzzle,
there is no known efficient algorithm for finding the
shortest path between start and target state and the run
time can increase significantly with changes in size and
initial state.

By the nature of the problem, 8-puzzle can be gen-
eralized in smaller and larger puzzles of similar nature.
For example, a matrix of 4x4 would be called a 15-
puzzle and a matrix of 5x5 would be called a 24-puzzle
and so on. In this paper, we try to evaluate various
methods to solve a general n-puzzle. We formulate



the problem as a graph problem where every state of
the n-puzzle is a vertex. Since there is a target state,
we used graph traversal algorithms and evaluate their
efficiency. We also implement A* search algorithm with
different admissible heuristic functions like Hamming
and Manhattan distances.

The contributions of this paper are as follows: (1) we
explore relationship between run time complexity and
level of randomization of an n-puzzle, size of n (2) we
compare several A* search algorithm heuristics on their
run time complexity, and (3) we provide evidence that
finding the shortest path to an n-puzzle is NP-Hard. We
discuss existing solutions in section 2, our approach in
section 3, experiments results in section 4 followed
by conclusion and future directions in section 5 & 6
respectively.

II. RELATED WORKS

n-puzzle is known for more than a century and was
popularized by Sam Loyd [4]. n-puzzle has received
quite an attention from research community because of
its simplicity and power in testing search methods. Hart
et al. [5] describes greedy A* best-first search algorithm
in which time complexity of the algorithm largely de-
pends on heuristics. For large search spaces, A* is not
efficient if a bad heuristic function is chosen. E. F. Moore
[6] proposes Breadth First Search and Trmauxs Depth
First Search [7] are inefficient in case of huge search
space as both of these graph traversal algorithms finishes
some part of graph first before proceeding to next part
irrespective of the likelihood of finding a solution. On the
other hand, A* is a best-first search which intelligently
selects the best choice at hand by using a heuristic
function in hope to find the optimal solution. Korf [8]
used the iterative deepening with depth-first A* (IDA*)
to show better results than [5] and eliminating many
difficulties in A*. To make [8] more efficient, [9, 10]
proposes removing duplicate nodes during the search. [9]
also proposes hybrid version of A* search in which they
implement real-time search algorithm and linear-space
best-first search algorithms. Drogoul et al. [14] proposes
distributed approach to solve the puzzle. There are also
numerous search heuristics testing literature. Pohl et al.
[11] used the 15-puzzle for bi-directional search and
dynamic weighting. Korf [12] used these puzzles for
the Macro-Operators. Pearl [13] used the 8-puzzle in the
Heuristics book as main example for testing heuristics.

III. APPROACH

We formulate the n-puzzle as an undirected dense
graph structure. Consider any state of the n-puzzle,
depending on the blank tile, there are at least 2 and at
most 4 possible moves. If the blank tile is at any of

the 4 corners, there are 2 possible moves. If the blank
tile is at the border (except the corners), there are 3
possible moves. There are 4 possible moves in all other
cases. If we consider a state of the puzzle as a vertex
in a graph, every vertex will have at least 2 adjacent
states (vertices) and at most 4. Every state is a vertex in
the graph and adjacent vertices represents the possible
achievable states from a particular state. Since the target
state is unique, a unique vertex is assigned to it like all
other states.

After representing the problem as a graph, we
consider argument from [11] that not every n-puzzle
is solvable. A n-puzzle is not solvable when the target
state is unachievable irrespective of number of moves.
Johnson et al. [11] used parity argument to show
that half of the states in a n-puzzle are not solvable
irrespective of number of moves. They used a function
which is invariant to valid moves to classify puzzle
states into solvable and unsolvable. An example of
unsolvable 8-puzzle is given in figure 1 (c).

Since every state in n-puzzle is a vertex in our graph,
it is simple to see that it is impossible to reach the target
vertex from all other vertices. Hence, graph of all states
is disconnected containing many sub-graphs. Only one
of the sub-graph will contain all solvable states and
the target state. Every other sub-graph will contain all
unsolvable states. A simple visualization is given in
Figure 3 where we show some sub-graphs of a 3-puzzle.
It is important that we determine the solvability of a
given state of n-puzzle beforehand otherwise we will
waste a large amount of computation in searching
for target state which remains unreachable. Figure 4
shows our representation of a sub-graph and its vertices.
Every vertex has at least 2 outgoing edges and at most 4.

There are many approaches for traversing a graph
particularly in case of n-puzzle. We focus on A* but
brief explanations are provided below:

3.1 Brute Force Approach: One simple and naive
way to solve the puzzle is to keep moving the blank
tile randomly until the target state is achieved. This
approach is highly inefficient as it is likely that the
target state will never be achieved because of cycles in
the graph.

3.2 Row-first Solution: Another naive way to solve
the puzzle is to iteratively put tiles into their correct
position starting from 1st tile. The problem with this
approach is that the tile which are already in their
correct position might needed to be moved to make it
possible for the next tile to be positioned correctly.



Fig. 3. Graph representation of all possible states. Each node represent a state and Green node represents target state. Note that target state is
unachievable from non-solvable states.

Fig. 4. In depth representation of the graph structure. Green state shows the target state.

3.3 Breadth Depth First Search: breadth first
search unintelligently performs search operation in
adjacent states first before moving to the next adjacent
level of successor states. On the other hand, depth first
search exhaustively performs search on a branch before
going to the next branch. Both of these searches are
inefficient because of their worst case time complexities.

While we are searching for the target state, we need
to make sure that we are proceeding in the direction of
the target state. Since there are many possible moves,
it is difficult to find out which path would lead to the
solution more quickly. To overcome this difficulty, we
can use greedy algorithms to select which next move
we should make in order to come a step closer to the
target state.

3.4 A* Search: this approach is widely used in graph
traversals where an intelligent decision is required to
choose a possibly optimal option out of several other
options. It is a type of greedy best-first search and
chooses the option which incurs the least cost based on
a heuristic function. We use two admissible heuristics:
Manhattan distance and Hamming distance.

3.4.1 Manhattan Distance: for an n-puzzle, the

Manhattan distance is the sum of distance between tiles
and their correct position.

3.4.2 Hamming Distance: for an n-puzzle, hamming
distance is the total number of tiles which are not in
their correct position. We count the number of tiles
which are not in their correct positions. Since we know
the tiles and their correct positions from the target state,
we can easily calculate this heuristic for each possible
move. A* search will select the move which is likely to
generate less number of misplaced tiles in future moves.

A* selects the successor state based on the successor
function f(n) = g(n) + h(n) where g(n) is the total cost at
node n and h(n) is the heuristic function value at node n.

IV. EXPERIMENTS

We implement our program in Java for experimenting
with a large number of input n-puzzles. The program
takes a range of n and a randomization number (see
below). We create a n x n 2D matrices to store all
n-puzzles. To create a good test input, we create an
n-puzzle in its target state and move the blank tile
for a fixed number of times (randomization number,
see below) to generate a random solvable state. We
then input this solvable random state to find out



Fig. 5. Results comparing number of minimum moves to degree of randomization (i.e. distance from target state).

running times of various types of search algorithms
and heuristics. We test our program by varying many
different parameters like the the size and randomization
number. We vary a randomization number (say, R) from
1 to 2000. R determines how many times the blank
tile is moved randomly to create a random state. Note
that a big matrix and smaller randomization will result
in an almost solved state. In other words, a smaller
randomization number will result in a state for which
the corresponding vertex in the graph is near to the
target state than the more randomized ones. We record
the results in a text file for analysis.

We run our experiments on Macbook Pro with Intel
i5 2.7 GHz processor, 8 GB of memory and 128 GB of
disk space.

Our results are shown in figure 5, 6 and 7. As
shown, we can observe that the number of minimum
moves remains in a particular range for a fixed size
of n-puzzle. The huge glitches in minimum number
of moves are because of the randomness in the state
generation. Some states are near even if randomly

generated. Figure 6 shows the run time for n-puzzle of
various sizes. We can see that upto the randomization
factor of 75, the puzzles’ solving time fluctuates but
after it increases very rapidly. Which confirms that
finding the minimum number of moves would be
intractable for larger matrices. Figure 7 shows our
longest run of a big matrix 99-puzzle. It took several
hours on high performance Linux server for 10x10
puzzle to reach solutions for large randomization values.

V. CONCLUSION

We showed that there is deep relation between
randomization of an n-puzzle and its run time
complexity. With increase in the matrix size and its
randomization, the run time drastically increases along
with memory usage. We also showed experimentally
that finding the shortest path is not feasible in case of
large matrices.

VI. FUTURE WORKS

Since the game can be generalized to a m x n
matrix, it is quite interesting to see the behavior of run



Fig. 6. Time taken to solve n-puzzle vs degree of randomization (i.e. distance from target state).

Fig. 7. Run time for 10x10 puzzle

time complexities and performance of various search
algorithms in case of m x n where m is not equal to n.
We can also explore more advanced but similar games
like Rubiks cube and try more advanced techniques
like Iterative Deepening A* (IDA*), Fringe Saving A*
(FSA*) and Generalized Adaptive A* (GAA*).

We can also try to find the farthest node in the state
graph from a solved state. The farthest node will give

us the most random solvable state. In other words, we
can explore the maximum number of moves required
to solve an n-puzzle. We can use parallel programming
to solve it more efficiently. For example, for all the
possible moves, we can assign each of them to a thread
which can efficiently run in parallel.

VII. REFERENCES

REFERENCES

[1] IBM. ”Deep Blue Overview”. IBM Research.
[2] AlphaGo, Google Deepmind https://deepmind.com/alpha-go
[3] AlphaGo, Google Deepmind

http://googleasiapacific.blogspot.co.uk/2016/03/alphagos
[4] Sam Loyd, https://en.wikipedia.org/wiki/Sam Loyd
[5] Hart, P. E.; Nilsson, N. J.; Raphael, B. (1968). ”A Formal Basis

for the Heuristic Determination of Minimum Cost Paths”. IEEE
Transactions on Systems Science and Cybernetics.

[6] Skiena, Steven (2008). The Algorithm Design Manual. Springer.
p. 480.

[7] Depth First Search https://en.wikipedia.org/wiki/Depth-
first search

[8] Korf, R. E., Iterative-Deepening-A* : An Optimal Admissible Tree
Search Proceedings of the Ninth International Joint Conference on
Artijcial Intelligence, Vol. 2, pp. 1034-1035, 1985.

[9] A. Reinefeld and T. Marsland. Enhanced Iterative-Deepening
Search, IEEE Transactions on Pattern Analysis and Machine
Intelligence, to appear, 1994.



[10] L. Taylor and R. Korf. Pruning Duplicate Nodes in Depth-First
Search, AAAI National Conference, pp. 756-761, 1993.

[11] Pohl, I., Practical and theoretical considerations in heuristic
search algorithms, in Bernard Meltzer and Donald Michie (editors)
,Machine Intelligence, American Elsevier, New York, 1977.

[12] Korf, R. E., Learning to solve problems by searching for Macro-
Operators. Research Notes in Artificial Intelligence 5, Pitman
Advanced Publishing Program, 1985.

[13] Pearl, J., Heuristics. Intelligent search strategies for computer
problem solving, Addison-Wesley Publishing Company, 1984.

[14] A Distributed Approach To n-puzzle solving. Alexis Drogoul and
Christophe Dubreuil.

[15] 15-Puzzle Ideone http://ideone.com/DCirVQ
[16] R. Korf. Real-Time Heuristic Search. Artificial Intelligence, vol.

42, no. 2-3, pp. 189-211, 1990.
[17] R. Korf. Linear-Space Best-First Search. Artificial Intelligence,

vol. 62, no. 1, pp. 41-78, 1993.
[18] Johnson, Wm. Woolsey; Story, William E. (1879), ”Notes on the

”15” Puzzle”, American Journal of Mathematics


